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Boo proposed ln this work, 1o eviluite expermentally  thermal diffisivity, o, and thermal
comductivty. b, of poorly conductive maigriab. The method selected in bised on transbent hesi
conduction i sobd medin anid seeks to determmne the conditions ander which the power senies
solulion charscieriting the transient heat equation can be simplified and approxutiated, with s greai
degree of sccmracy, by the Bt term of the series. It i then powible, by obiaining ihe 1 #ture
mmru-wgﬁm“mn{mtuuﬂm.mmuulhuulwtnfu i
The cxpenmental procedure ey molatively bow oot apperais and measurement squinment
cay 0 me hﬂm,Mumwm,hmuIMMﬂmhﬁrm
boundary condition (Tempetature ot 1 = 0) and of the lemperatare sensan location (length). Most
impartant, & price kinewledge of density and heat capacity n not required for the determmation of the
thermal conductivity

Three different solid geometries (Cylindncal, sphenical and cubic) and five matenads [FMMA,
HMWPE, POLYAMIDE &6, POM and PIFE) were selecied foe the messirements. The results
compare favorably with sciunl reporiod steady staie values, within % per cent of Jew
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L. JNTRODUCTION

In all heat transfer processes, it is necessary to predict the thermal behavior of the
system under study, namely, the temperature distnbution and the heat Aux
These variables are a function of the nature of the solid, and consequently a
function of certwin physical propertics.

Two of these properties, thermal conductivity (k) and thermal diffusivity (a).
play » dominant role since a and & are to a certain degree related to the rate at
which heat is transferred or internal energy stored,

There are several methods that permit the determination of a and &k (Tye,
1969). Most of the methods are based in the integral form of Founer's Law of
heat conduction, when applied to steady state heat transfer processes. Founer’s
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Law can be described by the following equation (Ozisik, 1980)

AT
=-h=t
q ; (n

Equation (1) allows for a direct experimental determination of the value of &,
under stendy state conditions. This also requires 1o measure the temperature
difference between two points in the direction of the heat flux. In addition, it is
required that the heat flux be unidirectional (g a function of x only). Thercfore,
the z and y directions must be very large when compared to the x direction (&
finite, x <<y, x << 2).

Two of these steady state methods traditionally employed for the determination
of the thermal conductivity, based on one dimensional heat tronsfer, are
described by ASTM C177 and VDE 0304 standards. Although their mathematical
models are simple, they need very elaborated experimental procedures and
require complicated and expensive equipments, Additionally, when the solids are
poor heat conductors, the measurements have the disadvantage that they are very
time consuming (until steady state conditions are achieved), and it is usually very
difficult to maintain steady state conditions for long periods of time.

Another method is one that s buased on unsteady state heat conduction,
frequently employed in the last few years due to the remarkable progress in high
precision electronic instrumentation (Uno and Hayakawa, 1980, Singh, 1982;
Amvari et al, 1984; Griffith, 1985). The mathemancal description is based on the
use of Fourier's Luw in u pointwise fashion, together with the principle of
conservation of energy. This description implies the presence of other propertics
besides the thermal conductivity, in order 1o properly describe the energy slorage
capacity of the solid such as the density, p, and heat capacity, C,. The equation
describing unsteady state heat conduction in o solid is as follows:

ar it iy

N = ¢y T (2
where a=k{p C,. Eq (2) assumes that the sohd mediom s isottopc with
respect to heat conduction, and that the properties are constant over time.

The solution of Eq. (2) depends on the solid geometry, the mitial temperature
and the boundary conditions, i.e., on the manner in which the solid imterchange
energy with the surrounding fluid. These solutions are always infinite series where
each of its termy consists of the product of & numerical coefficient, a function of
position and time. In addition, the seres have the following charbeteristic in that
cach term varies in a decreasing manner. This suggests that by properly selecting
variables, the series may be truncated to fewer terms without much loss in
acedracy. In certiin cuses, it can even be reduced to a single term, provided the
first term represents 99% of the summation value.

The method to be developed in this work is based on using anly the first term
of the series solution of Eq. (2), with certmin boundary conditions needed 1o
determine the correct range of applicability. The magnitude of the first term of
the seties must remain very large compared to the other terms of the series for
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high values of the Fourler modulus (for high values of time). Thus, if one
determines experimentally the temperature history st & point inside the solid, and
chooses the appropriste value of the Fourier modulus for which only the first
term of the series predominates, the logatithm of temperature s a linear function
of time. It is possible then, after applying a least square to fit the data. to
determine the value of the straight line parameters (slope and ordinate) with »
pair of measurements of temperature vs time. One can hypothetically use these as
two equations o obtain k and the unit surface conductance h. Although the
ordinate is very sensitive to small changes in the position or initial conditions. in
other words, in the location of the temperature sensor element, this method s
suggested by Carslaw and Jueger (1959).

In this study, n method s developed 1o determine the thermal diffusivity as well
as the thermal conductivity based exclusively in the evaluation of the time
cocficient in the exponential function. Several cases are presented: evaluation of
@ in a heat transfer medium where the Biot number tends to infinity, after k is
measured in i known “medium” where a standard s used. After this experiment,
one can calculate the conductivity of a different material with similar geometry,
with u prior knowledge of p and C,. Lastly, it is also possible to evaluate & by
submerging the unknown solid in the same conductive medium, without a
knowledge of p and C,. In all cases the apparatus and experimental procedure
are very simple,

2. MATHEMATICAL MODEL

The solutions to Eq. (2) for the following geometries, cylinder, sphere and cube,
are all of the form of an infinite series:

8=3 A4,/ (3)

L] ]
where,
A,.  Fourier coefficient for the initial condition with respect to the eigen-
function f,(x) of the Sturm—Liouville problem.
fi(x): Eigenfunction of the Sturm-Liouville problem.
g.(t): Exponential function.

The numerical coefficient (A, ) is in general, a slowly decreasing function and
depends on the geometry, the boundary and initial conditions. The functions of
position [f,(x)] are bounded and are of the Bessel or trigonometric type. The
time function [g,(1)] is exponential and the time cocfficient is again solely a
function of the boundary conditions and the geometry, but entirely independent
of the initial conditions and the location of the sensor. This function of time
includes as the Fourier’s coefficient, the ecigenvalue of the corresponding
Sturm-Liouville system, which Is the root of a transcendental equation. In Tables
I, 11 and 111, all coefficients and functions are tabulated. in dimensionless form,
for the geometrics under study.

One can then conclude from the latter, that for a given value of x, each term of
Eq. (3) is smaller than the preceding term, and therefore for a specific Fourier
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TABLE |

Solutions of the Eq. (2) for sphereal geometry: Temperature initial condition: conatant and aniform:
By = 1] aned twe diflerent bodndary conditions

Hounidnry condition
Surface constant lemperaiure Conveotive media (Finite 8i)
{Infinite M) &, =0 it
5‘5- Iuil y -FB'I Bik-li
4, -1y 2B+ (i~ 1) ln B,
n ﬂ_,]&lf +« BiBi=1)]
Lia) mniasa) win{dh, o)
o o
g.(Fo) exp(~n® & Fo) expl - ¢ Fa)
Trumeendental A cond, +Bi=1=0

Exquation

number, the series can be approximated by the first term as follows:
& =T expl —LX) ()

where,
I  Coefficient which is only a function of the mitial condition and the selected

thermocouple location
@ Coefficient function of geometry, boundury conditions and of the solid
properties. In Tuble 1V are listed the various expressions of the @ coefficient
for different geometries and boundary conditions.
Taking natural logarithm on both sides of Eq. (4) one obtains

O =Inl—Lx (5)

TABLE N1

Solutioms of the Eq, (2) for infinite cylinder: Temperature initinl condition constant and umiform
B p = 1] mod two different boundary condithoms

Boundary comdition

Surfuce constant tempesaiure Convective medin (Finite Bi):

(Infinite Bl B8, =0 il
e s = | = =B B 1)
A, i o il
W HEW] (B« AMlAL)
fda) Jild o) Lido)
gl Fol expl = AF0) expl—A1Fa)
Tramcendental B =1 A dth ) = Bdid ) =0

Equation
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